

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado

Materia: QUÍMICA

Esta prueba consta de dos opciones de las que sólo se contestará una. La puntuación de cada problema o cuestión se especifica en el enunciado. Se podrá utilizar cualquier tipo de calculadora

OPCIÓN A:

1.- (3 puntos) A partir de los datos de la tabla siguiente:

	$H_2S_{(g)}$	$SO_{2(g)}$	$H_2O_{(l)}$	$S_{(s)}$
$\Delta H_{f}^{o}(kJ.mol^{-1})$	-22,1	-296,4	-285,5	0
So (J.mol ⁻¹ .K ⁻¹)	205,4	247,6	70,0	31,8

- a) Calcula la variación de entalpía estándar de la reacción: $2H_2S_{(g)} + SO_{2(g)} \rightarrow 2H_2O_{(l)} + 3S_{(s)}$
- b) Calcula ΔG° y determina si la reacción será espontánea a 25°C en el sentido en el que está escrita.
- c) Explica si la reacción se verá favorecida a altas temperaturas.
- 2.- (3 puntos) El N_2O_4 se disocia según el equilibrio: $N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$

Su constante de equilibrio Kc, a 27 °C, vale 5,5.10⁻³. Se introducen inicialmente 0,5 moles de N₂O₄ en un matraz de 5 litros y posteriormente se calienta a 27 °C.

- a) ¿Cuál es la concentración inicial de tetraóxido de dinitrógeno?
- b) Calcula los moles de dióxido de nitrógeno en el equilibrio, a esa temperatura.
- c) ¿Aumentará la cantidad obtenida de dióxido de nitrógeno al aumentar la presión? Razona la respuesta.
- 3.- (2 puntos) Dadas las configuraciones electrónicas de los siguientes átomos neutros:

A:
$$1s^2 2s^2 2p^5$$
; B: $1s^2 2s^2$; C: $1s^2 2s^2 2p^2$; D: $1s^2 2s^2 2p^4$

A: 1s² 2s²2p⁵ ; B: 1s² 2s² ; C: 1s² 2s²2p² ; D: 1s² 2s²2p⁴ Señala razonadamente: a) el elemento con mayor carácter metálico; b) el elemento más electronegativo; c) el elemento con valencia iónica -2; d) un elemento con valencias covalentes 2 y 4.

- 4.- (1 punto) Justifica la verdad o falsedad de los siguientes enunciados: a) en una célula electrolítica se lleva a cabo una reacción química no espontánea; b) en el ánodo se produce una oxidación en las células galvánicas pero no en las electrolíticas.
- 5.- (1 punto) Señala los dos pares ácido-base en la siguiente reacción: H₂PO₄⁻ + HCl \(\bigcup H_3PO_4 + Cl^-\)

OPCIÓN B:

- 1.- (3 puntos) Se mezclan 150 mL de una disolución 0.1 M de KOH con 250 mL de otra 0.03 M de HNO₃.
 - a) Determina la especie (ácido o base) que queda en exceso al mezclar las dos disoluciones.
 - b) Calcula la concentración de iones hidroxilo en la disolución resultante (los volúmenes son aditivos).
 - c) Calcula el pH de la disolución anterior.
- 2.- (3 puntos) El tricloruro de cromo reacciona con el dióxido de manganeso, en presencia de agua, para producir dicloruro de manganeso y ácido crómico (tetraoxocromato (VI) de hidrógeno).
 - a) Ajusta la ecuación iónica y molecular (en medio ácido) por el método del ion-electrón.
 - b) ¿Qué cantidad de tricloruro de cromo se requiere para obtener 63 gramos de dicloruro de manganeso, si la reacción transcurre con un 75 % de rendimiento? (Datos: Masas atómicas: Mn= 55,0; Cl=35,5; Cr= 52,0)
- 3.- (2 puntos) Explica, a partir de la configuración electrónica, como tiene lugar la hibridación del carbono en la molécula de CO₂. Indica el número y tipo de enlaces existentes entre los átomos de C y O. ¿Es de esperar que sea una molécula polar?
- 4.- (1 punto) Formula los siguientes compuestos orgánicos y razona cuál de ellos será soluble en agua y tendrá un punto de ebullición más elevado: a) 2-butanol; b) butano.
- 5.- (1 punto) Explica cuál de los siguientes óxidos es el más iónico:
 - a) As₂O₃; b) SeO; c) K₂O; d) CaO